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A study of the magnetocrystalline anisotropy
of Sm1_nyxF91o_5M01_5(X = 0—10)
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The magnetocrystalline anisotropy and the spin reorientation of Sm_,Dy«FeosMo45 were
investigated in detail. At room temperature, all Smq_,Dy,FeqcsMo; 5 alloys possess easy
c-axis anisotropy and the magnetocrystalline anisotropy field decreases with increasing Dy
concentration. However, at low temperature, a spin reorientation transition of axis-to-cone
type was observed in the Sm,_,Dy,Fe g5sMo1 5 alloys with x > 0.8. The spin reorientation
temperatures increase with increasing Dy concentration in the Sm,_,Dy,FegsMo15 alloys.
© 1999 Kluwer Academic Publishers

1. Introduction fects observed in other R(Fe, M)compounds; (3)

In the past ten years, a lot of studies were focused oithe R(Fe, Moj), compounds and their nitrides can
the R(Fe, M), compounds and their nitrides Rrare  be easily formed and contain not much Mo concen-
earth and M= Ti, Cr, V, Mo, Si, W, Nb) for they are tration so that they were attracted more attention on
hopefully developed into excellent permanent-magnetshe potential technological application [7]. Recently,
[1-3]. Among the R(Fe, M compounds, R(Fe,M@)  many efforts were concentrated on R(Fe, Mbly
shows a remarkable difference from other R(Fe; M) compounds including the anisotropic magnetic pow-
compounds such as M= Ti, Cr, V, Si, W, and Nb  ders of NdFeysMo1 5Ny, which had a maximum en-
in the aspects of: (1) The Curie temperature greaergy product of BM)max = 169.6 kJ/mi (21.2 MGOe),
more quickly decreases with Mo concentration in R(Feyeported in 1997 [8]. The studies on spin reorienta-
Mo)1» than with M in other R(Fe, M) compounds tion transition (SRT) were considered as a significant
[1, 2]; (2) Magnetohistory effects were observed inmethod to understand the anisotropy and crystal-field
the R(Fe, Moj), compounds with R=Y [4,5], Lu interactions of the R-sublattice in R(Fe, M) Many

[4], or Dy [6] on the contrast no magnetohistory ef- authors have investigated on the magnetic anisotropy
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in Sm(Fe, Mo), [9-11] and SRT in Dy(Fe, M@} 11 r

[12-16]. In this present work, We emphasise on in-

vestigating the magnetocrystalline anisotropy and spir 10 |-

reorientation in the Sm 4Dy, Fe n5Mo01 5 series.
9 - .

2. Experimental details —_ 0.6

Alloys with composition of Sm xDyxFeigsMo1s _@7 8 -

(x=0, 0.2, 0.4, 0.6, 0.8 and 1.0) were prepared by~

arc melting the starting materials with a purity better 7

than 99.5% under an atmosphere of high pure argor <=

and then annealing in vacuum at 10%Dfor 5-10 h. = B

The quality of the samples was checked by powdet A

X-ray diffraction (XRD) and thermomagnetic analysis S w,,,v/""""'%w .

(TMA) method. The spin reorientation transition was f"" \‘vv\v‘v_ 10

detected both by TMA using an extracting-sample mag- 4 B,=40mT Ml

netometer in an applied field of 40 mT from 1.5 K to

room temperature and by ac susceptibilipgd mea-
surement in an ac field of 0.1 mT with a frequency of 0 50 100 150 200 250 300 350
220 Hz from 4.2 K to room temperature. T(K)

The magnetic structure of SmDy«FejgsMo; 5 at
room temperature and 1.5 K were determined by X-rayrigure 1 Typicalthermomagnetic curves at 1.5-293 K in afield of 40 mT
diffraction and the magnetization curves on the magor Sm_xDyxFeiosMo1 5.
netically aligned samples respectively. The anisotropy
field uoH, at room temperature was measured by the T T T T T T T 7 T
singular point detection (SPD) [17] technique on the
aligned Sm_,DyyFejosMo1 5 samples.

3. Results and discussion

Studies of X-ray diffraction patterns and thermomag-
netic analysis indicate that all the $mDysFeos
Moys samples consist of the main phase of
R(Fe, Mo),, which has a tetragonal ThMsptype
structure, and a few-Fe as the impurity phase. The
values of Curie temperaturds obtained by TMA are
listed in Table I. Fig. 1 shows several thermomagnetic + T,

curves of Sm_xDyyxFegsMo15 measured in a low ,_/\
field of 40 mT from 1.5 K to room temperature. It can 1.0
be seen that the thermomagnetic curves go smoothly
when x < 0.8 as seen in the S¥Dyo4Fe0sM015 P Y R R RN NPT B

Y.(@arb.unit)

and Sng sDyo 4FeiosMo; 5. However, an evident cusp, 0 50 100 150 200 250 300 350
which indicating a spin reorientation transition, was ob-
served on the samples with=0.8-1.0. It means that T(K)

the magnetic structure was changed at low temperature
for the Sm_y DyyFeiosMoy s samples with a high Dy Figure 2 Temperature dependence of ac susceptibility(T) at
Concentration. 4.2-293 K for several SmyDyxFejgosMo1 5 alloys.
In order to determine the spin reorientation transi-
tion temperaturell) precisely, susceptibility measure- measurements. The position of the pealgincurves
ments were performed on the $mDyyFe;os5M015 was defined as spin reorientation transition temperature
samples. Fig. 2 gives several typical results of the  Tsr which marked by an arrow in Fig. 2. The values of
Tsrmeasured fronyaccurves are also listed in Table I. It

) ) follows thatTs, increases with Dy concentration in the

TABLE | Thedata of the Curie temperatur&g, the saturation mag-

netizationMs, the spin reorientation transition temperatufgsthe easy Sn,x DyXFelO~5M01~5 aIon_s. Theoretlca"y’ the mag-
magnetization direction EMD and the magnetocrystalline anisotropyneucStr_u_Cture of R(Fe, M}isaresultofthe a'nlsotropy
fields 1o Ha for Smy_xDyxFeiosMoy s alloys competition between the R and Fe-sublattices [18]. In
the Sm_xDyxFeigsMo1 5 system, SmFgsMo; 5 has

T, Ms(Am’kg) Ta(K)  EMD #oHa (1) an easy-axis type due to the uniaxial anisotropy of Sm,
X (K 15K byxac 15K 293K 15K 293K  pecause of a positive second-order Stevens coefficient
0 485 113.90 0 caxis caxis 140 790  o2. However, with increasing the Dy concentration, a
0.2 481 112.82 0 caxis caxis 105 570  Spinreorientation transition could be expected to occur
0.4 472 9367 0 caxis caxis 6.0 3.70 inthe Sm_,DyxFe gsMo0; 5 alloys with a high Dy con-
8-2 jgi gg-ig 9‘; C_:;(:]Se 22);:2 20 22-(‘)‘29 centration when the planar anisotropy of Dy-sublattice
10 440 6201 156 cone caxis — 103 overcomes the total uniaxial anisotropy of Sm and Fe-

sublattice. A similar change @t; was also observed in
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Figure 5 Dy-concentration dependence of the magnetocrystalline aniso-
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Figure 3 Typical X-ray diffraction patterns on magnetically aligned //
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Figure 4 SPD curve of DyFg sMo1 5 at room temperature. MOH(T)

Dy1-xY xFei11Mo [19], Dy1_x Y xFer135Nbg g5 [20] and  Figure 6 Magnetization curves of magnetization parallel compongnt M

Dy1_xYxFe 1 Ti compounds [21]. and perpendicular component Mt 1.5 K as a function of applied field
Fig. 3 illustrates typical X-ray diffraction patterns #oHa

on the magnetically aligned samples at room tem-

perature. It indicates all SmmyDysFegsMo1s al- as a typical example. The position of the cusp in the

loys exhibit uniaxial anisotropy at room temperaturecurve of the second-order time derivatoe ?(Bg) /d t?

for only line (002) left in the diffraction patterns. It presents the magnetocrystalline anisotropy field. The

is reasonable as considering of even Dyjs®0; s, oHa values are listed in Table | and plotted in Fig. 5.

which possessing the largest planar anisotropy in th&he magnetocrystalline anisotropy field remarkably de-

Smy_xDy«FeipsMo;1 5 system, still shows a uniaxial creases monotonically with increasing Dy concentra-

anisotropy of 1.03 T at room temperature [6]. Thetion till a lowest value ofugH,=1.03 T arriving at

anisotropy fieldugH, at room temperature was mea- DyFe;gsMo; 5.

sured by singular point detection (SPD) technique on Fig. 6 gives the applied field dependence of magneti-

the magnetically aligned sample in a pulsed-field up tazation parallel componem, and perpendicular com-

25.0 T. Fig. 4 gives the SPD curve of DylggMo1 5 ponentM for several Sm_yxDyxFepsM0;1 5 samples
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at 1.5 K. Saturation magnetizatioMs, obtained from
M, curves by applying the law of approach to sat-
uration, are also listed in Table I. From Fig. 6, we
can see that the feature of the magnetization curve of;
Smy.gDyo2FensMo;1 5 shows a great difference from

Smy2DyosFeosMo; 5 for the two samples have the .

different types of magnetic structure and anisotropy at
1.5 K. It is clear that SggDyg2FeigsMo1 5 exhibits

a uniaxial anisotropy of about 10.5 T at 1.5 K while 4
Smy2DyosFeiosMo;1 5 shows a canted anisotropy for
the magnetizatiorM (0) of the hard direction has a

considerable value of about 12% of the saturation mag-9-
.C. KOUSTLER,L. SCHULTZ andG. THOMAS, ibid. 67

netizationMs near to the zero field. A similar spin re- 10

orientation transition of easg-axis to cone was also
observed in the Dy(Fe, M@ compounds [6, 15].

In conclusion, the Curie temperatures, saturatiori2.

magnetizations, and especially, the anisotropy and
spin reorientation transition were investigated on the
Smy_xDy«FepsMo; 5 system. The Curie temperatures

and saturation magnetizations at 1.5 K monotonically 4.

decrease with increasing Dy concentration. At room
temperature, all SinyDyxFegsMo; 5 alloys exhibit

uniaxial anisotropy when rapidly decrease from 8.2 T

for SmFggsMo;5 to 1.03 T for DyFegosMo1s.
However, a spin reorientation transition of axis-to-cone
type take place in the SmyDy«FejosMo; 5 samples
with a high Dy concentration ok =0.8-1.0. The
spin reorientation temperaturek; are 98 K and
156 K for Smy2DygsFeipsMo15 and DyFeosMo; 5
respectively.
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